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ANALYSIS OF UNBALANCED ANGLE-PLY RECTANGULAR
PLATESt

YIH-RENN KANt and Y. MARVIN ITo§

Mechanics and Structures Department, University of California, Los Angeles, California

Abstract-Unbalanced angle-ply laminated rectangular plates under transverse normal loading are analyzed.
By expanding the load and the displacements in single Fourier series the governing partial differential equations
are reduced to ordinary differential equations for simple support boundary conditions on two opposite edges
and arbitrary boundary conditions on the other two edges. The closed form solution for the ordinary differential
equati9ns is obtained for 450 angle-ply laminates. Several numerical examples are solved and their results are
presented in graphs. The degree of coupling between stretching and bending depends on the transverse loading,
the edge boundary conditions and the aspect ratio of the plate, as well as on the degree of anisotropy of the
layers, the angle oforientation and the number of plies in the composite. The type of in-plane boundary condition
(movable or immovable) has a significant effect on bending for simply supported plates but not for clamped
plates. The Fourier series method discussed in this paper can be used with the method of superposition to solve
problems having other edge conditions, as well as transverse loading conditions.

NOTATION

u,v, w
uo, va, WO

x,y,z
K

e
eO

1:

v
()

( )"

in-plane stiffness coefficients of plate
coupling stiffness coefficients of plate
reduced stiffness coefficients of a layer
flexural stiffness coefficients of plate
Young's modulus
Shear modulus
dimension of square plate (a = b = L)
component of stress couple resultant
component of in-plane stress resultant
component of transverse shear stress resultant
plate length along x direction
plate width along y direction
plate thickness along z direction
number of plies
transverse normal load at z = h/2
displacement components in x, y, z directions
middle surface displacement components
Cartesian coordinates
component of curvature
component of strain
component of middle surface strain
component of stress
Poisson's ratio
orientation angle of composite
partial differentiation with respect to i = x, y, z

t The results presented in this paper were obtained in the course of research supported partly by the National
Science Foundation and partly by the United Aircraft Corporation through grants to UCLA.

t Now at: General Motors Research Laboratories, Warren, Michigan.
§ On leave 1971-1972, Research Fellow, Division of Engineering and Applied Physics, Harvard University,

Cambridge, Massachusetts.
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INTRODUCTION

THE theory of anisotropic laminated plates has been well established [1-6]. In general, the
plate heterogeneity introduces a coupling phenomenon [2-6] between bending and
stretching even in the case of small deflections based on Kirchhoff's hypothesis. To date,
analytical solutions for coupled angle-ply laminates with general boundary conditions are
limited. Reissner and Stavsky [2] obtained solutions for an infinite coupled plate under
transverse loading and under a combination of uniform tension and uniform bending
moment. Recently, Whitney and Leissa [7-9] obtained double Fourier series solutions for
the transverse loading of coupled rectangular plates.

In this paper, a single Fourier series displacement formulation is used to obtain an
analytical solution for unbalanced angle-ply rectangular plates with simple support
boundary conditions on two opposite edges and general boundary conditions on the other
two edges. Unbalanced angle-ply plates consist of an even number of bonded layers of
elastically orthotropic sheets of equal thickness. The odd numbered plies are oriented
with an angle +() and the even numbered plies with an angle - () to the plate axes.

FORMULATION OF PROBLEM

Let us consider a thin elastic laminated plate of thickness h, referred to an x, y, z system
of Cartesian coordinates. The lower and upper surfaces of the plate are z = ±h/2. The faces
of the plate are assumed to be free of shear stresses but subjected to transverse normal
stress, as follows

!xzlz= ±hj2 = 0,

!zlz= -hj2 = 0,

!yzlz= ±hj2 = 0

!zlz= +hj2 = p(x, y).

(1)

(2)

Linear plate theory based on Kirchhoff's hypothesis leads to the following displace­
ment, strain and curvature relations

o
K y = - W.YY ,

o 0
Gy = V. Y ,

o 0 0
Gxy = u. y + v. x

(3)

(4)

(5)

(6)

Thus, normals to the undeformed middle surface are assumed to remain normal to the
deformed middle surface and undergo no extension. Also transverse shear deformation
is neglected.t

Hooke's law for the kth homogeneous orthotropic sheet is given by the relation

elk)
t2

(7)

t See the results of [10, IIJ for the cylindrical bending of composite laminates with shear deformation. The
effect of shear deformation at high span-to-depth ratio is very small.
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where the effect of transverse normal stress is neglected. The q,) quantities are reduced
stiffness coefficients as discussed by Tsai and Pagano [12J such that for the angle-ply con­
struction specified

c~~ = - C~: 1). (8)

In-plane stress resultants, transverse shear stress resultants and stress couple resultants
are defined as follows

(9)

(10)

(11)

The two-dimensional coupled linear theory of anisotropic laminated plates is deduced
from the equilibrium equations of three-dimensional elasticity

LX, x+ Lxy,y + LXZ,Z = 0 (12)

(13)

(14)

where body forces are not considered. These equations are converted to plate-stress
equilibrium equations by the method of Boussinesq. First equations (12HI4) are integrated
over the plate thickness and then equations (12) and (13) are multiplied by z and integrated
over the thickness. The following equilibrium equations [5J are obtained

N x,x + N xy,y = 0 (15)

Nxy,x+Ny,y = 0 (16)

Qx,x+Qy,y+P = 0 (17)

Mx,x+Mxy,y-Qx = 0 (18)

Mxy,x+My.y-Qy = O. (19)

Combining equations (17HI9) to eliminate Qx and Qy gives the result

Mx,xx +2Mxy.xy + My,yy+p = o. (20)
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In order to obtain plate stress-strain relations expression (4) is introduced into (7) and
the results are integrated according to definitions (9Hll) and conditions (8) to give

N x All AI2 0 0 0 B I6 eO
x

Ny A l2 A 22 0 0 0 B 26 eOy

N xy 0 0 A 66 B l6 B26 0 °exy

M x 0 0 B l6 D ll Dl2 0
(21)

Kx

My 0 0 B 26 Dl2 D 22 0 Ky

M xy B l6 B 26 0 0 0 D 66 Kxy

where the constants A ij , Bij and D ij are defined by the following integrals for an-layer
laminated plate

n fk
(Aij' B ij , D i ) = L ClJ)(1, z, Z2) dz (i,j = 1,2,6). (22)

k=l hk-l

The number of layers n is even and the thickness of each layer is h/n. The coupling effect is
introduced through the quantities B l6 and B 26 .

Substituting the plate Hooke's law relation (21) into the equilibrium equations (15), (16)
and (20) and using the kinematic equations (5) and (6), the following expressions for equilib­
rium in terms of displacements are obtained

(Al2+A66)u~xy+A66v~xx+A22V~y-Bl6W~xx-3B26W~yy= 0 (24)

Dllw~xxxx+2(D l2 +2D66)W~xxyy+ D22W~yyyy

Consider a rectangular angle-ply plate with two opposite edges simply supported.
The simple supports are smooth pins which do not allow normal displacements, but do
allow lateral contraction (tangential displacements). Thus, the boundary conditions at
y = 0 and y = b are given as

Wo = M = V
O = N = 0y xy'

The remaining boundary'conditions at x = 0 and x = a are arbitrary.

ANALYTICAL SOLUTION

(26)

Let us expand the transverse normal load p(x, y) into a half range Fourier sine series in
one variable y

00 mny
P = L p(m)(x) sin-.

m= 1 b
(27)
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Solutions are of the form

(33)

(29)

(30)

(32)

(28)

(34)

(35)

(36)

00 mny
UO = L ulm)(x) cos--

m=l b
00 mny

VO = L v(m)(x) sin--
m=l b

00 mny
WO = L w(m)(x) sin --.

m=l b
The boundary conditions (26) are identically satisfied by the in-plane displacements (28)
and (29) and the transverse deflection (30). Substituting equations (27H30) into the govern­
ing equations (23H25) gives an eight-order system of ordinary differential equations for
the variables u(m)(x), v(m)(x) and w(m)(x) in the form

(m) (mn) 2 (m) (mn) (m) (mn) (m) (mn)3 (m) _ 0 3A llu,xx- A 66 b u +(A 12 +A66 ) b v,X -3B16 b W,xx+ B26 b w - ( 1)

( )(mn) (m) (m) (mn) 2 (m) (m) 3 (mn) 2 (m) _ 0- A 12 +A66 b U,X +A66V,xx- A 22 b v -B 16W,xxx+ B26 b W,X -

(m) 2) (mn) 2 (m) (mn) 4 (m) r (m) (mn) (m)]Dll w,xxxx- 2(D 12 + D66 b W,xx+ D22 b W -B16 LV'xxx -3 b u,xx

_ B26[(:n) 3U(m) _ 3(:n) 2u~~)] = p(m)(x).

The general solution of the eight-order system (31H33) can be written as

u(m)(x) = uW)(x)+u~)(x)

v(m)(x) = vW)(x) + v~m)(x)

w(m)(x) = wW)(x) + w~m)(x)

where u~), v~m), w~m) are particular solutions and uW), vW) and wW) are homogeneous solu­
tions. Eliminating uW) and vW) from the homogeneous form of equations (31H33) an
eighth-order ordinary differential equation with constant coefficients for wW) is obtained
as follows

(A llA66Dll -All Bi6)d~8wW)+ (:n) 2( -2AllA66D12 -4AllA66D66 -A ll A22Dll

-6A 12Bi6 +4A66Bi6 +Ai2Dll +2A12A66Dll +6AIIB16B26)dd:6 wW)

+ (:n) 4(AllA66D22 +2A ll A 22D12 +4A llA 22D66 +A22A66Dll +20A12B16B26

+8A66B16B26 -9A22B~6 -2Ai2D12 -4A 12A 66D12 -4Ai2D66 -8A12A66D66

2 d
4

(m) (mn) 6 2-9A ll B26)dx4 WH + b (-AllA22D22 -2A22A 66D12 -4A22A66D66 -6A 12B26

+4A66B~6 +6A22B 16B26 + A i2D22 +2A 12A66D22)d~2 wW)+(:n) 8(A22A66D22

- A22B~6)WW) = O. (37)



1288 YIH-RENN KAN and Y. MARVIN ITO

The solution of (37) is of the form
8

wW)(x) = I cim) eA(;;')X

k=I

(38)

where the cim) (k = 1-8) are the arbitrary constants. The Aim) (k = 1-8) are determined
from the roots of the following auxiliary equation

2 1(m)8 (mn) 2(A Il A 66 D Il - A Il B I6 )1I. + b (-2A Il A 66 D I2 -4AIlA66D66 - A Il A 22D Il

-6A I2 Bi6+ A i2D Il +2A 12 A 66 D Il +6AIIB16B26)A(m)6 + (~nr(AIlA66D22

+2A 11 A 22D 12 +4AIIA22D66 + A22A66Dll +20A12B16B26 + 8A66BJ6B26 -9A22B~6

- 2A i2D12 - 4A 12 A 66D 12 - 4A i2D66 - 8Al2A66D66 - 9A IIB~6)A(m)4

(
mn)6 2 2

+ b (-A Il A 22 D22 - 2A22A66D12 -4A22A66D22 - 6A 12 B 26 +4A66 B 26

+ 6A 22 B 16B26 + Ai2D22 +2A12A66D22)A(m)2 + (~n) 8(A 22A 66 D22 - A22B~6) = O. (39)

The Newton-Raphson method [13J can be used to determine the roots of the auxiliary
equation (39). The numerical results show that for most of the engineering fiber-reinforced
composite materials, there are four real roots and four complex roots for A(m). Two of the
four real roots are positive and the other two are negative. Of the complex roots, two have
positive real parts and the other two have negative real parts.

For the case of 45° angle-ply composites, the closed form solution for auxiliary equation
(39) can be obtained as follows

At1.3.4 = ±;:[(~+ J(~r+2- P)±J(~+ J(~r+2- pr-4J (40)

A~~~.7.8 = ±~n[( -~+J(~r+2- P)±~ -~+ J(~r+2-pr -4J (41)

where

(X = (AIlA66D12+4AIlA66D66+AIlA22DIl +6AI2Bi2-4A66Bi6-Ai2DIl

-2A 12A 66D ll -6AllBi6)/(AllA66DIl -A Il Bi6) (42)

fJ = (A IlA66D22 +2A ll A 22D 12 +4A ll A 22D66 +A22A 66 D ll +20A 12B\6 +8A66Bi6

-9A22Bi6 -2Ai2D 12 -4A12A66D12 -4Ai2D66 -8A12A66D66

-9AIlBi6)/(AllA66Dll -A ll Bi6)' (43)

The numerical values of Aim) obtained from equation (39) by the Newton-Raphson method
are compared with the exact solutions (40) and (41) for 45° angle-ply laminates. It is found
that the accuracy of the solution obtained by the numerical technique is very satisfactory.
This justifies the use of the Newton-Raphson method to obtain the numerical solution of
equation (39).
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The in-plane homogeneous functions u~)(x) and v~)(x) are of the form
8

u~)(x) = L d~m) eALmlx
k= 1

8

v~)(x) = L f~m) eALm lx

k=l

1289

(44)

(45)

where d~m) andf~m) are constants which can be expressed in terms of 4m
). For real values of

A~m), d~m) and f~m) are in the form

d~m) = {- [(A 12B 16 -2B16A66)4m)4 +(3B16A 22 +3B26A 12 -2B26A66)4m)2 -B26A 22]/

[AllA66A~m)4+(Ai2 +2A 12A66 - A22All)A~m)2+ A 22 A66]) (:n)4m) (46)

f~m) = {[(AllB16)A~m)4 +(3A 12B 16 + 2A66B16)A~m)3 -(3AllB26)A~m)2

-(B26A 12 - 2B26A66)A~m)]/[AllA66A~m)4 +(Ai2 +2A 12A66 - A22All)A~m)2

+A22 A66]}(:n) 4m
). (47)

For complex values of A~m), d~m) andf~m) can also be expressed in terms c~m) but the forms
are more complicated and lengthy and will not be given here. The displacements, strains,
stresses and stress resultants can now be given in terms of eight arbitrary constants for each
expansion term.

The eight independent arbitrary constants 4m
) (k = 1-8) are to be determined from the

eight remaining boundary conditions at x = 0 and x = a. For rectangular plates with
semi-infinite length the boundary conditions at x = a are replaced by regularity conditions,
ulm), vIm), 'w(m) and w~~) to be finite as x -+ 00.

It is noted that the ratio of in-plane displacements to transverse deflection, which is an
index of the degree of coupling between stretching and bending, can be estimated from
equations (46) and (47) before the entire problem is solved.

NUMERICAL EXAMPLES AND DISCUSSION

Finite plate under uniform load
Consider a finite plate under uniformly distributed transverse loading p = Po with

simple support conditions (26) at y = 0 and y = b and the following edge conditions at
x = 0 and x = a:

Simply supported edgest

Uo = 0

N xy = 0

W
o = 0

M x = O.

t This corresponds to the problem considered by Whitney [7].

(48)
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Clamped edges

Free edges
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W?x = O.

(49)

(50)
N xy = 0

Mx =0

Qx+Mxy,y = 0

where Qx + Mxy,y is the Kirchhoff shear force.
The coefficient p(",) of the half range Fourier series expansion (27) for the uniform

transverse load Po is

v~m) = 0 for all m.

(51)

(52)

(53)

(54)

In each layer let us denote the tensile moduli parallel and transverse to the filament
direction by EL and ET , respectively, and the shear modulus by GLT (= ET ). The major
Poisson's ratio VLT is assumed to be 0·25. The total number of layers is denoted by n
(= 2, 4, 6, (0). The case n = 00 actually denotes the solution which neglects the coupling
terms (i.e. B 16 = B26 = 0) and will be called the "uncoupled'" solution.

The center deflection of n-layer rectangular plates is plotted vs. angle (J in Figs. 1-3 for
the various boundary conditions at x = 0 and x = a given by (48H50). Figure 4 gives the
variation ofcenter deflection with the aspect ratio alb for (J = 30°. The degree ofanisotropy
EJET is taken to be 40 which is typical of a graphite-epoxy composite. For large number
of layers (n ~ 6 in the present case) the "uncoupled" solution is a good approximation for
the center deflection. It can be seen that the coupling effect becomes very significant for
two-layer laminates with large angle (J. This phenomena was first discussed by Whitney
and Leissa [6]. The effect of in-plane boundary conditions is shown in Tables 1 and 2 for
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FIG. I. Center deflection of angle-ply square plates under uniform load with simple support-simple

support (8-8) edges vs orientation angle.

various bending boundary conditions and different angle e. It can be seen from Tables 1
and 2 that the type of in-plane boundary condition is a significant factor for simply sup­
ported but not clamped plates.

These results are based on a five term single Fourier series solution. For comparison
Table 1 also includes, in brackets, the double Fourier series solution of Whitney [7] with
121 terms for simply supported edges. It is seen that the present method requires only a
few terms in the expansion in order to obtain relatively accurate results.

Plates with irifinite length under uniform line load

Consider a simply supported rectangular plate of infinite length. The simply supported
conditions are given by equations (26). The width of the plate is b. It is uniformly loaded
along the y-axis, as shown in Fig. 5.

The uniformly distributed line load along the y-axis can be represented by the follow­
ing expansion

4 00 1. mny
P = Po = Po - L - SIn-

bn m= 1,3,5 m
(55)
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eo
FIG. 2. Center deflection of angle-ply square plates under uniform load with simple support-damped

(S-C) edges vs orientation angle.

where Po is the uniform load/unit length. From the condition of symmetry, it follows that
at x = 0

Qx=PO= -~Po i -!...sin
mny

2 n m= 1,3,5 m b

w?x = 0

UO = 0

VO = o.
The regularity conditions give that uo, VO, Wo and w?x are finite as x approaches infinity.

The deflection along the center line y = b/2 for two and four-ply and "uncoupled"
laminates with angle () = 30° is shown in Fig. 5. It is clearly shown that the degree of
coupling is severe for 30° laminates. Comparing these results with those of uniform load
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S-F 1
~L~ X

Ct. =40Er
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1293

o

FIG. 3. Center deflection of angle-ply square plates under uniform load with simple support-free
(S-F) edges vs orientation angle.

given in Fig. 4 for high aspect ratios, it is seen that the effect of coupling is dependent on
the type of transverse loading. This contradicts the conclusion by Whitney [7] that the
effect of coupling is independent of the type of transverse loading.

Plate with semi-infinite length under uniform edge moment

Consider a rectangular plate with semi-infinite length (a --+ OCJ) and simple support edge
conditions (26) at y = 0 and y = b under uniform edge moment M°as follows:

Uo = 0

Vo = 0

Wo = 0

M x = M o

at x = 0 (57)



YIH-RENN KAN and Y. MARVIN ITO

9875 6

alb

n=2
8= 30·

GLT =ET

EL = 40ET

Y y VLT=O-25

SLex

432

1294

8-0

TO

'"Q 6-0
><
~
.q

t:\..0 5-0

"'".c:::

~ 4-0
><

~
.q

3-0

~
~ 2-0

1-0

0

FIG. 4. Center deflection of 30° angle-ply plates under uniform load vs aspect ratio.

TABLE I. CENTER DEFLECTION OF AN ANGLE-PLY SQUARE PLATE UNDER UNIFORM LOAD WITH SIMPLE
SUPPORT-SIMPLE SUPPORT EDGES (EdEr = 40, GLr = Er , VLT = 0·25)t

Boundary conditions
WO = My = N xy = VO = 0

at y = 0, L

In-plane Angle
Bending B. e. Re. 0

at x = 0, L at x = 0, L (deg.) n=2 n=4 n=6

[0·44395] [0·40458] [0·39804]
UO = N xy = 0 0·4439 0-4045 0-3980

wO = M x = 0 Nx=Nxy=O
5

0-4435 0-4045 0-3980
UO = VO = 0 0-4184 0-3988 0-3955
N x = VO = 0 0-4164 0-3983 0·3953

[0-75765] [0-31461] [0-28387]
UO = N xy = 0 0-7576 0-3146 0-2838

WO = M x = 0
N x = N xy = 0

30
0-7546 0-3144 0-2838

UO = VO = 0 0-6510 0-3084 0-2815
N x = VO = 0 0-5957 0-3039 0·2798

[0-73368] [0-28324] [0-25433]
UO = N xy = 0 0-7337 0-2832 0-2543

WO = M x = 0
N x = N xy = 0

45
0-7337 0-2832 0-2543

UO = VO = 0 0-6812 0-2809 0-2535
N x = VO = 0 0-6508 0-2788 0-2528

t Brackets enclose results based on double Fourier series method from Whitney [7].

n = CX)

0-3927

0-2633

0-2351
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TABLE 2. CENTER DEFLECTION OF AN ANGLE-PLY SQUARE PLATE UNDER UNIFORM LOAD WITH SIMPLE

SUPPORT-<:LAMPED EDGES (EdET = 40, GLT = ET , VLT = 0·25)

and

Boundary conditions
o(L L) E Th

3
2

WO = M, = N x, = Vo = 0 w--x--xlO

at y = 0, L
2' 2 POL 4

In-plane Angle
Bending B. C. B. C. 0

at x = 0, L at x = O,L (deg) n=2 n=4 n=6

N x = VO = 0 0.()946 0·0837 0·0819

WO = WO = 0 N x = N x , = 0
5

0.()946 ().0837 ().0819
.x UO = VO = 0 0·0943 ().0836 ().0819

UO = N x , = 0 0·0942 Q.0836 ().O819

N x = VO = 0 0·2945 0·1262 0·1411

WO = WO = 0 Nx=Nx,=O
30

0·2950 0·1262 0·1411
,x UO = VO = 0 0·2946 0·1262 ().1411

UO = N x, = 0 0·2942 0·1262 ().1411

N x = VO = 0 0·4068 0·1650 ()'1487

WO = wO = 0 N x = N x , = 0
45

().4068 0·1650 0·1487
,x UO = VO = 0 ().4068 0·1650 ().1487

UO = N x , = 0 ()'4068 0·1650 0·1487

n = 00

0.Q806

0·1060

()'1377

luOI < 00

Ivol < 00

Iwol < 00

IW?xl < 00

as x -+ 00. (58)

y

5·0

~}ooN

0
>< • K

"'oC:l
4·0

Ito Uniform line load Po
......
'" 8 .. 30°<::
~.... EL '" 40Er
';:( GLr"' Er

~ I{r .. 0·25
"'lI
>i
"i 1·0

0 1·0 3·0 4-0

xl/)

FIG. 5. Deflection along center line of 30· angle-ply strips under uniform line load.
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There is no transverse normal loading p. The edge bending moment at x = 0 is expanded
into the following Fourier series

4Mo ~ 1. mny
M x = M o = -- L. -sm-

b
­

n m=I,3,Sm
(59)

to obtain the solution of this problem. The deflection along the center line (y = b/2) are
shown in Fig. 6. The maximum deflection occurs at x = 0·50b for 300 angle-ply laminate.

-5-0

y

N

~ -40

~
~o

"'.... -3-0
<:::

ll7
)(

N -20

~

"~ -1-0

o 1-0

Mo <Xl

'T-"""--";-,r'-n,,,,,.L-_ x
Uniform edge bending moment Mo

£L =40Er

6i.r=Er

I1r =0-25
8 =30·

4-0

x/b

50

FIG. 6. Deflection along center line of 30° angle-ply strips under uniform edge bending moment.

CONCLUSIONS

The results of this study yield the following conclusions:
1. The degree of coupling does not only depend on the degree of anisotropy of material

properties, the angle of orientation and the total number of layers in the laminate. It also
depends on the type of transverse loading, the aspect ratio and the edge boundary condi­
tions. The type of in-plane boundary condition (movable or immovable) has a significant
effect for simply supported plates but not for clamped plates. The orientation angle has a
very significant effect for two-layer laminates.

2. The ratios of the in-plane displacements to transverse deflection (u(m)/w(ml , v(m)/w(m)),

which is an index of the degree of coupling, can be estimated before the entire problem is
solved, as indicated in equations (46) and (47).

3. The present single Fourier series solution for unbalanced angle-ply laminates
coverges more rapidly than previous double Fourier series solutions [7-9]. It is more suit­
able to use the present single series solution for numerical computation especially if higher
derivates of the displacements uo, Vo and Wo are involved. This has been discussed in detail
by Timoshenko [14] for the Navier and Levy solutions for simply supported homogeneous
rectangular plates.
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4. The present method can solve a wide class of problems in geometry (i.e. rectangular
plates with finite, semi-infinite and infinite length), as well as boundary conditions (only
two opposite simply supported edges are required; the remaining edge boundary condi­
tions can be arbitrary). It can be used with the method of superposition to solve problems
having other edge conditions as well as transverse loading conditions.
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A6cTpaKT-liIccJIe,[lYIOTcli HeypaBHoBecHbIe, CJIOHCTbIe, co CJIOllMH HaKJIOHeHHbIMH rro,[l yrJIOM, rrpliMOY­
rOJIbHbIe rrJIaCTIIHKH rro,[l BJIHlIHlleM rrorrepe'IHoH HOpMaJIbHOH Harpy3KII. IlYTeM pa3JIOlKeHII1I Harpy3KH
II rrepeMeIIIeHIIH B op,!\IIHapHbIe pll,[lbI cj>ypbe, orrpe,[leJIlIIOIIIHe ,[IHcj>cj>epeHI.\HaJIbHbIe ypaBHeHlIlI B 'IaCTHbIX
rrpOH3BO,[lHbIX CBO,[lliTCli K 06bIKHOBeHHbIM ,[IHcj>cj>epeHI.\HaJIbHbIM ypaBHeHHlIM ,[IJIli npOCTIIX rpaHH'IHbiX
YCJIOBbIH Onepal.\lIl1 Ha ,[IByX rrpOTIIBOrrOJIIOlKeHHbIX Kpallx H rrpOH3BonbHbiX rpaHII'IHbiX YCJIOBlIlIX Ha
,[IByX ,[IpyrHx Kpallx. Ilony'laeTcli peIlleHlle B 3aMKHyToM BH,[Ie ,[IJIli 06bIKHoBeHHbIx ,[I1Icj>cj>epeHI.\HaJIbHbIX
ypaBHeHHH, ,[Inll yrna HaKJIOHa CJIOeB paBHoro 45°. )J.aIOTCli HeKOTopbIe '1HCneHHbIe rrpHMepbl pe3YJIbTaTbi
KOTOpbIX rrpe,[lCTaBnllIOTCli B BH,[Ie rpacj>HKoB. IlOpll,[lOK corrplilKeHHlI MelK,[Iy paCIlIHpeHHeM H H3rH60M
3aBHCHT OT rrOIIepe'lHOH Harpy3KII, rpaHH'IHbIX KpaeBHX YCJIOBHH, acrreKTa OTHOilieHlIlI IIJIaCTHHKH, a
TaKlKe OT IIOpll,[lKa aHH30TpOIIHII CJIOeB, opHeHTal.\HH yrJIa H 'IHCJIa CJIOeB. THII rpaHH'IHOrO yCJIOBHlI B
IIJIOCKOCTH /IIepe,[lBHlKHbIH Hnll HeT/ HMeeT 3Ha'iIlTeJIbHbIH 3cj>cj>eKT Ha H3rH6 CB060,[lHO OIIepTbIX IIJIaCTHHOK,
HO He ,[IJIli 3aIIIeMJIeHHbIX. 06cylK,[IaeMbIH B pa60Te MeTO,[l pll,[lOB «I»ypbe MOlKHO HCIIonb30BaTb, BMeCTe C
MeTO,[lOM cyrreprr03HI.\HH, ,[IJIli paC'IeTa 3a,[la'l 06JIa,[laIOIlIIIX ,[IpyrHMII KpaeBblMH yCJIOBlIlIMII, a TaKlKe
,[IpyrHMII YCJIOBlIlIMH rrOrrepe'lHoil: Harpy3KH.


